Privatized bankruptcy: a study of shipping financial distress

Julian Franks1 Oren Sussman2 Vikrant Vig1

1London Business School

2Saïd Business School, University of Oxford

Global Corporate Governance Colloquium, Stanford, June 2015
The changing landscape of bankruptcy law

A world-wide trend towards Ch. 11 type legislation
- expanding the powers of courts
 - from enforcing contract \Rightarrow substantial discretion

What's wrong with *freedom of contracting*?
- coordination failures among creditors
 - Jackson’s (1986) common pool
- contracts: not adaptable, not sophisticated
- fires-sale markets are illiquid: “assets in liquidation fetch prices below value in best use ...[Hence,] automatic auctions ... without the possibility of Chapter 11 protection, is not theoretically sound.” (Shleifer and Vishny)
Freedom of contracting in action: shipping

“There is only one law in shipping: there is no law in shipping”

- Sami Ofer (shipping magnate, Zim went bust, June 2014)

Ex-territorial assets:
- detachment from on-shore legislation
- but how does the industry establishes rule of law?
 - unintended consequences
- Scandinavian auctions: Stromberg (2000), and Eckbo and Thorburn (2008)
 - is competition possible, let alone desireable?
- Fire sale discounts: Campbell et. al. (2011) and Coval and Stafford (2007)
(1) Contracts/institutions adapt \Rightarrow rule of law

- Ultimate remedy against default: arrest/repossession of vessel
- Many ports are hopelessly corrupt/inefficient

Hypothesis: $\text{duration}|_{\text{spec.}} = \text{duration}|_{\text{other}}$

- rejected, χ^2-stat: 42.92, significant at 1%
- Since crew (physical control of vessel) is senior to mortgage
 - if owner is default, and in arrears to crew
 - a banks promise to pay crew is credible
- Since every vessel is owned by (single vessel) subsidiary
 - banks take a security interest in both vessel and equity
 - can repossess on the high seas

Formal test: regress number of arrests on volume of traffic
- i: country index

$$N - arrets_i = c + 0.30 \times volume_i + 2.97 \times D - specialized_i + \varepsilon_i$$

(2.34)
(8.46)
Ports: arrests and traffic

<table>
<thead>
<tr>
<th>Country</th>
<th>N arrests</th>
<th>Arrest (%)</th>
<th>Traffic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibraltar</td>
<td>33</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>19</td>
<td>4</td>
<td>1.7</td>
</tr>
<tr>
<td>Netherlands</td>
<td>37</td>
<td>7.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Singapore</td>
<td>37</td>
<td>7.8</td>
<td>3.3</td>
</tr>
<tr>
<td>South Africa</td>
<td>19</td>
<td>4</td>
<td>1.2</td>
</tr>
<tr>
<td>UK</td>
<td>42</td>
<td>8.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Australia</td>
<td>9</td>
<td>1.9</td>
<td>5.1</td>
</tr>
<tr>
<td>China</td>
<td>5</td>
<td>1.1</td>
<td>15.8</td>
</tr>
<tr>
<td>Germany</td>
<td>6</td>
<td>1.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Japan</td>
<td>2</td>
<td>0.4</td>
<td>6.6</td>
</tr>
<tr>
<td>South Korea</td>
<td>4</td>
<td>0.8</td>
<td>5.8</td>
</tr>
<tr>
<td>USA</td>
<td>23</td>
<td>4.9</td>
<td>11.9</td>
</tr>
</tbody>
</table>
Coordination failures are rare and implosion related
Proxy: arrest

- In a (second best) Coasian world, companies that run out of capital
 - would lose their assets to better capitalized ones
 - but transfer of ownership should not disrupt operation
 - and cash generation

- Anecdotal evidence: most de-leveraging is obtained under threat of repossession
 - with very little actual repossession
 - much space for attempted recovery
Eastwind: immobilization relative to capacity

EastWind's cycle of distress: total and grounded capacity

Franks, Sussman & Vig
Privatized bankruptcy
Immobilization/capacity, all arrests, entire fleet

Franks, Sussman & Vig

Privatized bankruptcy
Generalizing the analysis

We produce a panel (annual frequency)

- i: company index, t: time index
- regression

\[
\frac{imobi_{i,t}}{capacity_{i,t-1}} = \alpha + \beta \frac{capacity_{i,t} - capacity_{i,t-1}}{capacity_{i,t-1}} + \varepsilon_{i,t}
\]

- Additional variables
 - $Dbust$: a dummy variable for the bust year
 - $Dbust(+1)$: a forward $Dbust$
Panel A

<table>
<thead>
<tr>
<th>Δcap</th>
<th>sample</th>
<th>[-0.1,0)</th>
<th>[-0.2,-0.1)</th>
<th>[-0.3,-0.2)</th>
<th>[-0.4,-0.3)</th>
<th>[-0.5,-0.4)</th>
<th><-0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δcap</td>
<td>0</td>
<td>-0.049</td>
<td>-0.063</td>
<td>-0.088</td>
<td>0.091</td>
<td>-0.074</td>
<td>-0.638</td>
</tr>
<tr>
<td></td>
<td>(-0.01)</td>
<td>(-2.06)</td>
<td>(-1.87)</td>
<td>(-1.98)</td>
<td>(1.07)</td>
<td>(-1.08)</td>
<td>(-16.85)</td>
</tr>
<tr>
<td>intercept</td>
<td>0.007</td>
<td>0</td>
<td>-0.005</td>
<td>-0.017</td>
<td>0.04</td>
<td>-0.023</td>
<td>-0.381</td>
</tr>
<tr>
<td></td>
<td>(19.77)</td>
<td>(-0.11)</td>
<td>(-1.05)</td>
<td>(-1.51)</td>
<td>(1.35)</td>
<td>(-0.72)</td>
<td>(-13.61)</td>
</tr>
<tr>
<td>N</td>
<td>76,471</td>
<td>2,163</td>
<td>1,740</td>
<td>1,361</td>
<td>1,088</td>
<td>972</td>
<td>2,145</td>
</tr>
<tr>
<td>R²</td>
<td>0</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td>0.117</td>
</tr>
<tr>
<td>(\Delta \text{cap})</td>
<td>sample</td>
<td>[-0.1,0)</td>
<td>[-0.2,-0.1)</td>
<td>[-0.3,-0.2)</td>
<td>[-0.4,-0.3)</td>
<td>[-0.5,-0.4)</td>
<td>< -0.5</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>(\Delta \text{cap})</td>
<td>0</td>
<td>-0.03</td>
<td>-0.016</td>
<td>-0.091</td>
<td>0.09</td>
<td>-0.079</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(-0.01)</td>
<td>(-1.39)</td>
<td>(-0.56)</td>
<td>(-2.12)</td>
<td>(1.07)</td>
<td>(-1.19)</td>
<td>(-0.21)</td>
</tr>
<tr>
<td>(Dbust(+) \times \Delta \text{cap})</td>
<td>-5.085</td>
<td>-2.366</td>
<td>-0.595</td>
<td>-0.111</td>
<td>-0.409</td>
<td>-0.266</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-22.67)</td>
<td>(-27.95)</td>
<td>(-9.48)</td>
<td>(-1.49)</td>
<td>(-6.77)</td>
<td>(-3.85)</td>
<td></td>
</tr>
<tr>
<td>(Dbust \times \Delta \text{cap})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.501</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-22.44)</td>
</tr>
<tr>
<td>intercept</td>
<td>0.007</td>
<td>0</td>
<td>0</td>
<td>-0.019</td>
<td>0.039</td>
<td>-0.026</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>19.77</td>
<td>0.25</td>
<td>0.1</td>
<td>-1.72</td>
<td>1.34</td>
<td>-0.86</td>
<td>0.15</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0</td>
<td>0.194</td>
<td>0.312</td>
<td>0.065</td>
<td>0.003</td>
<td>0.046</td>
<td>0.287</td>
</tr>
<tr>
<td>Long term effect</td>
<td>0.77</td>
<td>0.91</td>
<td>0.69</td>
<td>0.55</td>
<td>0.77</td>
<td>0.85</td>
<td></td>
</tr>
</tbody>
</table>
Fire-sale discount - standard method

- Run an hedonic-price regression

\[P_i = \alpha + \beta X_i + \varepsilon_i \]

- where
 - \(i \): transaction index
 - \(P \): transaction price (in log)
 - \(X \): an index of characteristics
 - age, size, type, time fixed effects
 - \(\varepsilon \): error term

- Then run

\[\varepsilon_i = \bar{\alpha} + \bar{\beta} D_{fire} \]

- Pulvino (1998): the discount is up to 30% (in recession). We agree.
Anecdotal evidence: arrested vessels are in miserable condition

- From Lloyd’s narratives
 - “auxiliary engines and boiler trouble”
 - “ingress of water into engine-room; hull in bad condition; cargo holds water contaminated”
 - “cracks in hull”
 - “survey revealed unseaworthiness”
 - “bottom damage requiring considerable steel renewal”
 - “sold to Bangladeshi breakers”

- Myers (1977) under-investment problem applied to maintenance
Hypothesis: $\text{hazard}_{\text{arrest}} = \text{hazard}_{\text{no-arrest}}$

rejected: z-stat 6.28, significant at 1%,
Interpretation: the vertical distance between the graphs
- a vessel, say, 17 years old, under arrest
- is 3% more likely to “die”
- relative to a non arrested vessel

Interpretation: the horizontal difference between the graphs
- to find the break-up probability of the above vessel
- add 3 “effective” years to its “nominal” age

If a vessel depreciates at, say, 5% PA, then 15% of the “raw” fire-sale discount is explained by low maintenance
More formally: use hazard rates as as instrumental variable

- Identification: let
 - X: characteristics, excluding age
 - D: dummy variable for arrest
 - AGE: registered age
 - δ: extra effective age per arrest

Then it is easy to show that the following system is identified

$$p_i = \alpha_p + \beta_p X_i + \gamma_p (AGE_i + \delta D_i) + \lambda D_i + \epsilon_{p,i}$$

$$h_i = \alpha_h + \beta_h X_i + \gamma_h (AGE_i + \delta D_i) + \epsilon_{h,i}$$
<table>
<thead>
<tr>
<th></th>
<th>without quality correction</th>
<th>with quality correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrested</td>
<td>-0.259***</td>
<td>-0.134***</td>
</tr>
<tr>
<td></td>
<td>(-7.4)</td>
<td>(-3.8)</td>
</tr>
<tr>
<td>observations</td>
<td>9,673</td>
<td>9,673</td>
</tr>
<tr>
<td>R^2</td>
<td>0.011</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Further possible effects: corruption and valuation
Shipping is not a frictionless industry; we find evidence:

- under investment in maintenance
- dysfunctional owners
 - many dubious characters

Yet, these are not the kind of frictions that are used to justify Ch. 11

Europe is obsessed with harmonization of insolvency law

- EC Regulation 1346/2000
- is it really necessary?